

CONTENTS. 目录 ____

01	前言	4
02	中国氮肥生产现状、挑战与机遇	5
	中国氮肥生产的现状和发展 ● 中国氮肥产量变化及相关政策演变 ● 中国氮肥进出口 ● 中国氮肥生产的温室气体排放	
	中国氮肥生产面临的挑战和机遇 ● 中国氮肥生产面临的挑战 ● 中国氮肥生产面临的机遇	
03	中国氮肥消费的现状、挑战与机遇	12
	中国氮肥消费的现状和发展 ● 中国氮肥施用量变化及政策演变 ● 中国氮肥施用强度 ● 中国氮肥利用效率 ● 中国农业氧化亚氮的排放	
	中国氮肥消费面临的挑战与机遇 中国氮肥消费面临的挑战中国氮肥消费面临的机遇	

U4	中国氮肥生产和消费的减排措施、成本与潜力	22
	中国氮肥生产的减排措施及潜力 ● 中国氮肥生产的减排措施 ● 中国氮肥生产的减排成本与潜力	
	中国氮肥消费的减排措施与潜力 ● 中国氮肥消费的减排措施及减排潜力 ● 中国氮肥消费的区域减排潜力分析	
05	中国氮肥生产和消费的利益相关者分析	28
06	发展建议	32
附	录 1 新型肥料的环境与经济效益	37
参	考文献	40
免	责声明	42

氧化亚氮 (N₂O) 是仅次于二氧化碳和甲烷 的全球第三大温室气体,其排放量占全球人类活 动引起的温室气体排放总量的 5%, 对气候系统 和臭氧层构成双重威胁。联合国环境规划署和联 合国粮农组织最新发布的《全球氧化亚氮评估》 报告显示, 当前全球大气中 N₂O 含量相比工业 化前水平已激增 20%, 其中 75% 的人为排放源 来自农业活动,特别是化肥施用与畜禽粪肥管理 贡献了农业排放总量的 90% (UNEP and FAO, 2024)。根据联合国政府间气候变化专门委员会 (Intergovernmental Panel on Climate Change, IPCC) 第六次评估报告 (Sixth Assessment Report, AR6), 相比 1850-1900年, 2010-2019年升 温大约 1.09℃,其中 0.1℃由全球氧化亚氮排放 驱动。N₂O 是长寿命温室气体,可在大气中存 在 109 年, 其百年尺度全球增温潜势 (Global Warming Potential, GWP100) 是二氧化碳 (CO₂)的 273倍,其累积效应必将对实现《巴 黎协定》温控目标形成持久挑战。因此,为了实 现《巴黎协定》的长期目标,除加大 CO2 和甲烷 的减排力度外,亟需立刻开展 N₂O 减排行动,尤 其是农业部门作为最大排放源亟待优先管控。国 际社会需构建跨《巴黎协定》与《蒙特利尔议定 书》的协同机制,在推进工业催化减排技术的同时,重点突破创新性技术和肥料研发、政策支撑、 氮肥损失阻控及高效利用等农业转型路径。

2024年中华人民共和国气候变化第一次双 年透明度报告显示, 2021 中国 N₂O 排放总量 为 210.2 万吨, 其中能源活动排放 46.4 万吨, 占 22.1%; 工业生产过程排放 58.0 万吨, 占 27.6%; 农业活动排放 94.9 万吨, 占 45.1%, 农 业活动是 N₂O 的最大排放源。农业源 N₂O 排放 主要由农用地和动物粪便管理过程导致,其中动 物粪便管理排放 22.7 万吨, 占比约 23.9%; 农 用地排放约71.8万吨,占比75.7%,其主要来 自氮肥施用。氮肥行业横跨工业与农业两大领域, 其生产与施用过程均会导致 CO2 和 N2O 排放。 当前我国氮肥行业温室气体排放量占全国排放总 量的 3.5%, 其中 N₂O 排放量占全国排放总量的 33% (李素玉, 2024)。因此, 本研究聚焦中国 氮肥生产与消费,首先分析其现状、趋势及政策 演变,特别是产业和环保政策等对中国化肥产业 的影响; 其次从生产与消费两方面分析 N₂O 的减 排潜力、成本及面临的挑战和机遇,提出具体减 排措施和路径; 最后提出中国氮肥行业低碳转型 建议,助力中国双碳目标的实现。

中国氮肥生产现状、挑战与机遇

中国氮肥生产的现状和发展

• 中国氮肥产量变化及相关政策演变

中国氮肥产量经历了从极低水平(20世纪50年代至70年代)、快速增长(20世纪70年代到21世纪初)、达到峰值(2015年)到下降趋稳(2015年后至今)的发展阶段。20世纪90年代,中国化肥行业生产规模急剧扩大,2000年氮肥产量达到2398万吨,并于2005年成为全球最大的氮肥生产国,基本满足国内农业需求。2010年,中国氮肥产量增至4459万吨,占全球总产量的43.5%(图2)(郭满天,2025)。2015年中国氮肥产量达到历史峰值4971万吨,但产能过剩问题突出。此后,中国通过多项政策调控推动产业转型,氮肥产量开始逐步下降,2018年降至3457万吨。随后氮肥产量虽有小幅回升,但增速有限,2021年产量为3798万吨(折纯氮),同比增长2.6%,2022年微增至3821万吨(图1)。

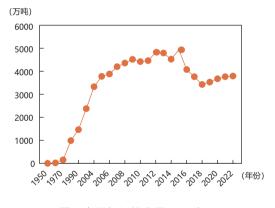


图 1 中国氮肥的产量(万吨)

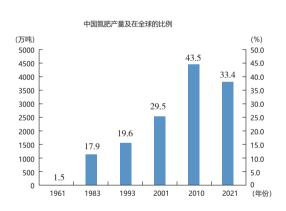


图 2 中国氮肥产量及在全球的占比

(注: 氮肥产量数据来源于国家统计局数据)

中国氮肥品种多样,尿素产量占氮肥总产量的主导地位(图 3)(Li DJ, et at, 2023)。2020 年,中国尿素产量占比 64.7%,其氮含量达 46% 且不含副成份,成为施用最广泛的氮肥品种。生产上主要施用的氮肥包括尿素、碳酸氢铵,硝酸铵和氯化铵等,其中硝酸铵因安全管控限制在农业领域应用较少。

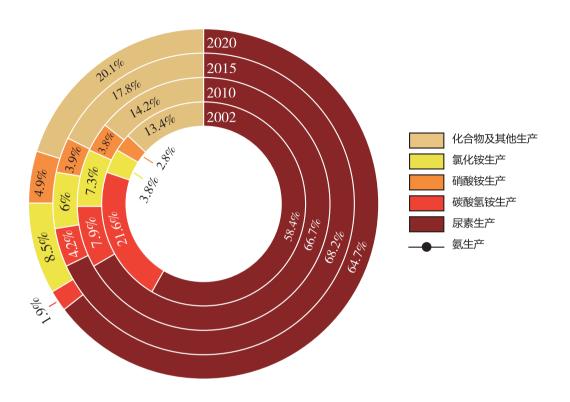


图 3 不同年份氮肥产品的比例

I 起步阶段

新中国成立初期,全国仅有5家氮肥生产厂,氮肥年产量约6000吨。20世纪五六十年代,中国通过恢复扩建老厂和新建中小型氮肥厂(包括引进苏联、荷兰等国的设备),初步形成生产能力。

II 快速发展阶段

20世纪70年代,为满足农业增产对化肥的需求,中国引进美、德、法、日等国大型化肥设备,中国的氮肥产能显著提升。改革开放后,中国氮肥工业进入新的发展阶段:调整氮肥工业布局,重点引进新型化肥生产装备和技术,如美国催化剂制造、英国尿素生产技术等,加强对氮肥产品的品种和环保要求,推动氮肥产品升级和质量提升。20世纪90年代,中国氮肥工业取得新的快速发展:中国政府出台一系列优惠政策,鼓励民间资本进入氮肥工业领域,氮肥企业数量激增,氮肥产品品种进一步增加。90年代末期,产量过剩问题显现,甚至出现企业停产或半停产状态。

Ⅲ 产能过剩阶段

21世纪初,中国成为全球最大的氮肥生产和消费国,化肥产量持续增长,在满足国内农业需求的同时实现大规模出口。然而其产能过剩问题却日益突出。为此,中国推进化肥行业市场化改革,逐步取消化肥价格限制、取消优惠电价,实施天然气价格市场化改革,取消优惠运价,并于2015年9月1日起恢复征收13%的化肥销售和进口增值税,通过成本倒逼机制抑制过剩产能,优化供给结构。同时,通过实施化肥使用量零增长行动方案,推动测土配方施肥和新型肥料应用,着力解决化肥利用率低及面源污染问题。

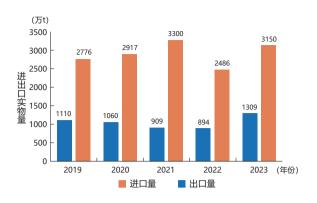
IV 转型升级阶段

2015年,工信部发布《推进化肥行业转型发展的指导意见》,提出调控化肥总量、优化产品结构、提升创新能力等转型措施。同年起,中国陆续取消化肥生产用电优惠、用气价格优惠、化肥铁路运输补贴及增值税优惠政策,全面放开化肥用气价格,取消主要化肥品种出口关税,推动化肥行业市场化改革。2020年中国双碳目标提出后,《"十四五"工业绿色发展规划》和《"十四五"节能减排综合工作方案》相继出台,进一步明确氮肥行业低碳转型路径,持续推进化肥减量增效和绿色发展。

中国化肥产业自 1949 年新中国成立后,经历了起步、快速发展、产能过剩和转型升级四个发展阶段(图 4):

图 4 中国化肥生产政策的演变

注: 蓝线为中国氮肥产量, 橙线为中国农用氮肥施用量(中国农用氮肥施用量=氮肥施用量+复合肥施用量*0.3)


总体来看,中国氮肥产业在政策引导下,经历了从短缺转向过剩,再通过结构优化迈向绿色发展的历程。未来,随着"双碳"目标下节能减排降碳政策的深化实施,以及供给侧结构性改革推进下精准农业技术、绿色高效氮肥技术的持续突破,氮肥行业将加速向集约化、智能化、低碳化的新阶段转型。

● 中国氮肥进出口

中国化肥进出口政策是推动行业发展的重要调控手段。2008年成为关键转折点,中国自此由化肥净进口国转变为净出口国。此后通过渐进式推进出口限制放宽,至2019年全面取消化肥出口关税,实现出口全面放开。2021年化肥出口激增导致国内市场出现阶段性供应短缺,同年10月起,国家实施化肥进出口法检政策,对29个10位数海关商品编码的化肥产品出口实施法定检验,致使2022年化肥出口量骤降至2486万吨(同比减少24.6%)(图5)。

2023 年中国化肥出口量达到 3150 万吨,同比增长 26.7% (图 5),这得益于出口法检政策松绑及国际市场需求恢复性增长。从出口结构看,氮肥和复合肥占比突出,其中硫酸铵连续五

年居出口首位,2023年出口量占比达44%,磷酸二铵(504万吨)、尿素(425万吨)、磷酸一铵(204万吨)分列第二至第四位,占比分别为16%、14%、6%(图6)。地域分布上,南亚、南美为主要流向:硫酸铵主要流向巴西(占36%),尿素主要出口印度(46%)和韩国(10%)(表1),磷酸二铵则集中销往印度(60%)及东南亚地区(胡敏,2024)。政策层面,海关总署2023年12月实施新《进出口肥料检验规程》,统一技术规范并优化法检流程,助推出口质量与数量双提升。这一调整标志着中国化肥出口监管从严格限制转向精准调控,兼顾国内保供与国际市场责任。

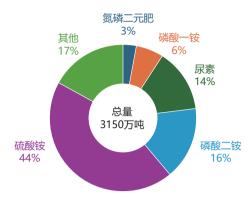


图 5 2019-2023 年中国化肥进出口量

图 6 2023 年中国化肥出口产品结构

表 1 2023 年中国化肥产品主要出口目的国和占比

产品名称	出口总量 /万吨	出口 目的国	出口量 占比%	产品名称	出口总量 /万吨	出口 目的国	出口量 占比%
磷酸铵	1377	巴西	36	磷酸二铵	504	印度	60
		缅甸	11			越南	8
		越南	6			泰国	6
		其他	47			其他	26
尿素	425	印度	46	磷酸一铵	204	巴西	36
		韩国	10			阿根廷	12
		智利	5			澳大利亚	11
		缅甸	5			其他	41
		墨西哥	5				
		其他	29				

注:数据来源与海关总署

• 中国氮肥生产的温室气体排放

氮肥产业是典型的高耗能产业,其生产原料和燃料严重依赖煤、天然气等化石能源。尿素和硝酸铵等氮肥的主要原料是合成氨,氮肥生产端约90%的温室气体排放来自合成氨生产过程。合成氨的温室气体排放主要源于无烟煤和天然气等在造气和重整过程中产生的CO₂。全球约72%的合成氨生产以天然气为原料,22%以煤为原料,而中国以煤炭为原料的比例达79.59%(李素玉等,2024)。通过工业升级改造,中国合成氨单位温室气体排放量从2005年的5.1 t CO₂e t⁻¹ N 下降至2015年的3.9 t CO₂e t⁻¹ N (表 2),但仍高于全球先进技术水平的合2.64 t CO₂e t⁻¹ N (Li DJ et al, 2023)。

不同氮肥产品生产过程的温室气体排放存在显著差异。2005 至 2015 年间,中国主要氮肥品种生产过程的温室气体排放强度普遍下降:尿素生产由 6.3 t CO_2 e t $^{-1}$ N 下降到 5.1 t CO_2 e t $^{-1}$ N 下降到 5.1 t CO_2 e t $^{-1}$ N 下降到 4.2 t CO_2 e t $^{-1}$ N,磷酸氢铵生产从 5.4 t CO_2 e t $^{-1}$ N 下降到 4.2 t CO_2 e t $^{-1}$ N,硝酸铵生产从 11.0 t CO_2 e t $^{-1}$ N 下降到 9.8 t CO_2 e t $^{-1}$ N。这一变化主要归因于工业升级改造推动的能耗降低以及合成氨技术进步。硝酸铵生产过程的排放因子最高,因其生产涉及硝酸合成环节,该过程会释放强效温室气体N2O(Li DJ et al, 2023)。通过优化氮肥产品结构(如提高硝态氮肥占比)和采用减排技术,可进一步降低氮肥行业碳排放。

表 2 中国不同氮肥产品生产过程温室气体排放因子

/≡ om *A ±n	排放因子(CO	先进技术	
氮肥类型 -	产业升级前	产业升级后	(CO ₂ e t ⁻¹ N)
合成氨	5.1	3.9	2.64
尿素	6.3	5.1	2.52
碳酸氢铵	5.4	4.2	-
硝酸铵	11.0	9.8	3.03
氯化铵	5.4	4.2	-
硫酸铵	-	0.35	0.11
化合物及其他生产	-	6.1	-
尿素硝酸铵溶液	-	-	2.44

硝酸是氮肥工业的重要中间物质,可用于合成硝酸铵、硝酸钾等硝基化肥。其生产过程中,原料氨在高温下通过催化氧化、换热冷却等步骤产生硝酸,同时产生副产物 N_2O 。当前我国硝酸生产主要采用双加压法工艺,该工艺尾气排放浓度低于 $100mg\ m^{-3}$,成品硝酸浓度可达 60% 以上,且占国内硝酸生产工艺的 90% 以上。在未应用减排技术的情况下,双加压法生产 1 吨硝酸的 N_2O 排放量为 7~9 kg,而欧洲采用减排技术后,每吨硝酸的 N_2O 排放量降至 1.85 kg(李素玉,2024)。由于国内尚未出台 N_2O 排放限制法规,大量硝酸工厂未采取减排措施(FENG et al., 2022)。中国作为全球硝酸生产大国,2020年产量达 1320 万 吨,年排放 N_2O 约 10 万 吨,

温室效应相当于 3000 万 吨 CO₂ 排放。

Luo 等(2024)基于煤/天然气开采到氨生产、氮肥制造、施用及出口的全生命周期碳氮流动分析,量化了中国氮肥系统的温室气体排放,研究表明:2020年中国氮肥系统的温室气体排放总量为496.04 Tg CO₂当量,其中生产端的排放量为368.06 Tg CO₂当量,占总排放的74.3%;消费端的排放量为127.98 Tg CO₂当量,占总排放的25.7%。全球尺度上,氮肥生产过程温室气体排放量占供应链总排放的38.8%,而田间施用环节排放占比达58.6%(图7)。该研究揭示了供应链不同环节排放结构的显著差异,中国生产端排放占比超过全球均值近一倍,凸显其能源结构与生产工艺的碳密集型特征。

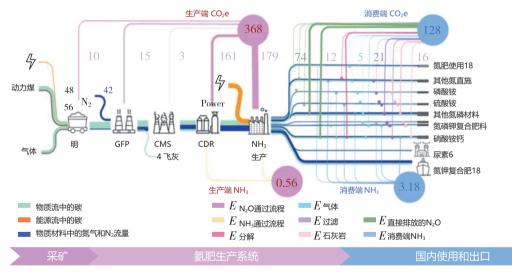


图 7 中国氮肥系统的温室气体排放

中国氮肥生产面临的挑战和机遇

氮肥是中国农业消费最多的一种化肥,约占化肥总产量的73%,其中尿素是主要的氮肥品种,占中国氮肥总消费量的60%以上。氮肥生产以合成氨为核心中间体,在合成氨的基础上生产尿素、硝酸铵等产品,通过运输、销售最终施用于农田。21世纪以来,中国氮肥行业曾经历产能过剩阶段,现正朝绿色低碳方向转型升级。而当前中国氮肥行业与国际水平仍存在差距,且面临诸多挑战,但更应看到全球低碳化背景下缓释肥料等技术发展的机遇。

• 中国氮肥生产面临的挑战

1. 能源结构依赖煤炭,清洁能源应用不足

全球氮肥生产约 85% 以天然气为原料,而中国受"富煤少油缺气"能源结构影响,氮肥行业以煤头炭为主原料,约占总产能的 71%,而气头企业仅占 23%。同时,由于中国受资源禀赋限制,风能、太阳能等可再生能源在氮肥生产中的应用比例显著低于国际水平。

2. 生产工艺技术落后,研发投入与创新能力 不足

国内氮肥企业仍采用哈伯-博施工艺,低碳技术研发投入不足,近二十年基本没有改变。在绿氨等零碳氮肥生产技术研发方面明显滞后,目前尚未建成投产绿氨原料氮肥厂。行业研发投入普遍较低,技术创新平台建设滞后。

3. 碳排放政策与标准体系不完善

国内氮肥行业低碳转型的政策支持体系仍有 完善空间,现有碳交易机制对行业减排的引导作 用尚未充分显现。当前行业碳排放标准与能效指 标体系尚未健全,特别是缺乏覆盖全生命周期的 强制性减排约束,针对氧化亚氮排放的专项控制 行动方案尚未形成系统化政策框架。

4. 碳市场与激励机制不健全

中国碳排放权交易市场自 2021 年以发电行业为突破口启动,并计划逐步纳入水泥、钢铁和电解铝行业,但包括化肥企业的化工生产尚未被覆盖。受限于碳市场激励机制不健全及行业覆盖范围有限,氮肥企业参与碳交易的积极性不足,加之国内消费者对低碳氮肥的认知度较低,市场需求疲弱。

5. 区域产能分布失衡

中国氮肥产能呈现显著的区域集聚现象,主要集中于粮棉主产区和原料资源地,如黄河流域、长江流域及沿海地区。合成氨生产装置多分布于原料产地及农业主产区,其中山西、山东、河南、内蒙古、新疆、湖北、安徽、河北、四川、江苏10个省(区)的合成氨产能合计占全国总产能的74%左右。然而,上述中西部地区受经济基础薄弱和技术水平,产业转型升级难度较大。

• 中国氮肥生产面临的机遇

1. 政策支持力度加大

在双碳目标推动下,国家出台多项政策鼓励 支持氮肥产业绿色转型,包括加大绿色生产技术 研发补贴力度,对采用先进环保工艺的企业实施 税收优惠等政策,为企业转型提供政策保障与资 金支持。

2. 技术创新驱动显著

科技发展为氮肥生产带来契机,新型催化剂、 生物固氮技术等突破性技术成果提升氮肥生产效 率,降低能耗与污染物排放,如新型催化剂可降 低合成氨反应温度与压力,减少能源消耗,助力 产业绿色转型。

3. 市场需求持续增长

消费者环保意识的增强推动绿色低碳农产品需求上升,倒逼氮肥产业向绿色高效方向升级,为绿色转型企业拓展市场空间。

4. 能源结构加速优化

为加快实现双碳目标,中国能源结构向清洁 能源转型,为氮肥产业采用绿电、绿氢、绿氨等 清洁能源提供基础,从源头减少生产环节碳排放, 从而实现绿色生产。

中国氮肥消费的现状、挑战与机遇

1 中国氮肥消费的现状和发展

• 中国氮肥施用量变化及政策演变

改革开放以来,中国农业快速发展,中国农用氮肥施用量从 1980 年的 942 万吨持续增长到 2014年的 3027 万吨,并达到峰值。随着 2015年《到 2020年化肥使用量零增长行动方案》的实施,氮肥施用进入持续下降阶段,特别是 2017年后降幅尤为显著,至 2023年中国氮肥施用量已降至 2323 万吨(图8)。

图 8 1979-2023 年中国农用氮肥施用量及相关政策

橙线为中国农用氮肥施用量(中国农用氮肥施用量 = 农用氮肥施用量 + 复合肥施用量 *0.3)

中国化肥消费政策的演变基于不同历史阶段的发展需求,其核心始终围绕保障农业可持续发展。从 氮肥施用政策的发展脉络来看,主要经历了三个递进阶段:早期以鼓励增产为导向的氮肥增施阶段,中 期转向测土配方施肥与农业面源污染防控并重的科学管理阶段,以及当前以化肥减量增效为核心的绿色转型阶段。

I 鼓励化肥应用阶段

该阶段始于 1953 年国民经济 "第一个五年计划",延续至"九五"计划(1996-2000年),该时期政策以扩大化肥应用为核心,旨在提升农业产量并保障粮食安全。中国化肥施用量于 1995 年突破国际公认的耕地化肥施用安全标准上限。

Ⅱ 科学施肥与面源污染防治阶段

针对化肥过量施用导致的农业面源污染问题,中国自"十五"计划(2001-2005)起系统推进科学施肥政策。"十五"期间明确提出防治不合理使用化肥导致的化学污染及其他面源污染。"十一五"(2006-2010)至"十二五"(2011-2015)期间通过中央一号文件持续强化测土配方施肥的落实力度,政策表述从技术"推广"逐步升级为"扩大实施范围"和"深化应用"的战略部署,其中测土配方施肥技术自2005年起在全国范围内全面推广。

Ⅲ 化肥减量增效政策演进阶段

在"十三五"期间(2016-2020年), 中国以化肥使用量零增长为核心目标,农业 农村部于 2015 年发布《到 2020 年化肥使 用量零增长行动方案》,通过优化施肥结构、 推广测土配方施肥等措施,于 2020 年实现 提出化肥零增长行动方案, 2017年实现水 稻、玉米、小麦三大粮食作物化肥利用率较 2015年提高 5个百分点的阶段目标。2022 年农业农村部进一步制定《到 2025 年化肥 减量化行动方案》,标志着进入"十四五" 深化阶段。随着 2020 年"双碳"目标的提 出, 化肥减量增效与碳减排协同推进, 在 《国民经济和社会发展第十四个五年规划 和二〇三五年远景目标纲要》《"十四五" 农业农村现代化规划》等顶层设计中,均明 确将提升化肥利用率和构建现代科学施肥体 系作为农业绿色转型的重要路径(图8)。

在全国环保政策趋严、化肥产能过剩及双碳目标推进的宏观背景下,国家通过加强宏观调控与供给侧结构性改革并举的举措,推动化肥行业供需格局优化和落后产能出清,促使其发展回归理性,整体步入转型升级、提质增效的高质量发展新阶段。

• 中国氮肥施用强度

根据《全国农产品成本收益资料汇编 2023》数据,近年来中国主要粮食作物和蔬菜单位面积氮肥施用量呈波动下降趋势。以 2022 年为例,稻谷、小麦、玉米和蔬菜的单位面积施氮量分别为 10.95、13.93、11.90 和 18.98 kg/亩(表 3)。

表 3 2017-2022 年中国主要粮食和蔬菜单位种植面积施用氮量(kg N/亩)

	稻谷	小麦	玉米	蔬菜
2017	11.67	14.23	12.67	20.29
2018	11.41	13.73	12.25	20.60
2019	11.31	13.92	11.80	20.69
2020	11.33	13.83	11.91	19.04
2021	11.10	14.03	11.67	19.87
2022	10.95	13.93	11.90	18.98

注: 根据氮量 = 氮肥用量 + 复合肥 *0.3

中国不同作物的氮肥施用强度存在显著差异,其中蔬菜的施用强度显著高于稻谷、小麦和玉米三大主粮作物。2022年数据显示,中国稻谷、小麦、玉米和蔬菜的平均氮肥施用强度分别为182、209、204和273 kg N/ha(图9)。蔬菜的全国平均值较稻谷、小麦和玉米分别高出50%、30.6%和33.8%。

不同作物的氮肥施用强度存在明显区域差异:在三大粮食作物种,小麦和玉米的全国平均氮肥施用强度高于稻谷。稻谷种植中,华北、西北和长江中下游地区氮肥施用强度最高,均超过全国水平;小麦种植体系中,西北地区氮肥施用

强度居于首位,其他地区均低于全国均值,东北地区最低;玉米种植体系中,西北和西南地区的氮肥施用强度高于全国平均水平,其中西北地区最高,达 268kg N/ha,超出全国均值 31.4%,而东北和华北地区氮肥施用强度较低。蔬菜种植体系则呈现西北、长江中下游和东南地区高于全国平均水平的现状,其中东北地区最低,为 181 kg N/ha(图 9)。西北地区各类作物氮肥施用强度普遍偏高,这可能主要归因于该区域土壤有机质含量低、降水量少导致的养分有效性不足,以及种植制度(如复种指数差异)和作物产量对气候条件的适应性差异。

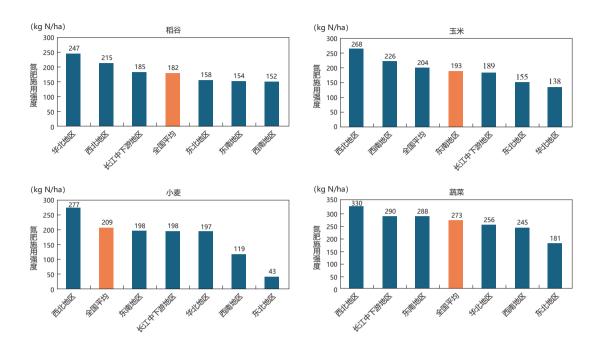


图 9 2022 年各地区主要粮食作物和蔬菜氮肥施用强度(kg N/ha)

• 中国氮肥利用效率

氮肥利用效率是评估作物对施入土壤氮素吸收比例的关键指标。据 FAODATA 数据,中国氮肥利用效率呈现阶段性变化: 1960 年代至 1970 年代初期为高利用阶段,初期效率为 40%,随后逐步上升并于 1963 年达到峰值 60%。此阶段正值绿色革命初期,化肥施用量较低,氮素输入主要依赖传统有机肥,氮素投入与作物吸收量匹配度较高。1970 年代中期至 1990 年代中期,受"多施肥多增产"观念影响,氮素过量投入导致土壤酸化及养分淋失加剧,利用率以年均 1.5%-2% 的速度持续下降,至 1990 年代中期 跌破 30%。2000 年代至 2021 年,随着"化肥使用零增长"行动实施,农业部门通过测土配方施肥、秸秆还田等技术推广,利用率以年均 1% 的增速逐步回升(表 4)。

表 4 1961-2022 年中国氮肥利用效率 (%)

		, , , , , , , , , , , , , , , , , , , ,	
时间	氮肥利用率 (%)	时间	氮肥利用率 (%)
1961	59.71	1992	34.33
1962	61.28	1993	38.09
1963	64.09	1994	36.12
1964	65.54	1995	32.01
1965	64.10	1996	31.83
1966	61.80	1997	34.61
1967	65.89	1998	34.95
1968	61.30	1999	33.43
1969	57.90	2000	34.16
1970	58.71	2001	34.28
1971	58.36	2002	31.87
1972	52.49	2003	31.14
1973	54.34	2004	32.36
1974	59.00	2005	32.25
1975	53.49	2006	31.90
1976	51.31	2007	32.70
1977	42.19	2008	34.79
1978	41.33	2009	32.83
1979	39.47	2010	34.34
1980	35.43	2011	34.60
1981	38.29	2012	34.99
1982	40.18	2013	35.14
1983	40.48	2014	37.27
1984	40.66	2015	38.55
1985	40.10	2016	39.82
1986	40.68	2017	42.86
1987	36.06	2018	43.77
1988	33.09	2019	45.59
1989	32.76	2020	45.90
1990	35.26	2021	47.28
1991	34.71	2022	47.04

• 中国农业氧化亚氮的排放

中国农业温室气体排放主要来源于动物肠道发酵、动物粪便管理、水稻种植、农业土壤和农田废弃物田间焚烧。根据《中华人民共和国气候变化第一次双年透明度报告》中的数据分析: 1994 年至2021 年间,中国农业温室气体排放呈现先增长、后下降、再回升的波动趋势。至2021 年,中国农业温室气体排放总量达9.31 亿 t CO_2e (图 10) ,其中 N_2O 排放量为2.51 亿吨 CO_2e ,占农业排放总量的26.96%。农业 N_2O 排放量于2012 年到达最高值后逐步下降(图 11),2021 年农用地 N_2O 排放占比为75.7%,成为该气体的首要农业排放源。

中国农业 N_2O 排放量与中国氮肥施用量高度相关(图 11),氮肥施用是其排放的主要来源,因此减少农业 N_2O 的排放需以控制氮肥施用量为首要措施。



图 10 中国农业温室气体排放量

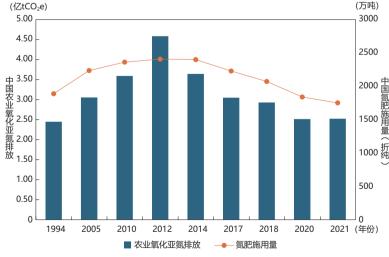


图 11 中国农业氧化亚氮的排放量

注 图 10 和图 11 图根据中华人民共和国气候变化第一次双年透明度报告中的数据整理制作, 氮肥施用量数据来源于中国统计年鉴 2024

● 主要粮食作物和蔬菜种植的 N₂O 排放量

基于最新整合数据分析, 水稻、小麦、玉米和蔬菜种植体系由施肥引起的 N_2O 排放系数分别为 0.39%、 0.94%、 0.74%、 1.69% (Ma et al. 2021)。根据统计年鉴资料汇编,结合 2017-2022 年全国作物种植面积、氮肥施用量及排放系数核算,三大粮食作物与蔬菜种植的施肥相关 N_2O 年排放量总体稳定,2017年为 232.5 千吨,2022年为 229.9 千吨。其中,蔬菜种植年均排放量最高,超过 102 千吨,近六年呈现波动上升趋势,这由于归因于蔬菜种植面积显著扩大及单位面积施氮量波动;三大粮食作物的 N_2O 排放量呈波动下降趋势,主要由种植面积变化驱动(图 12)。

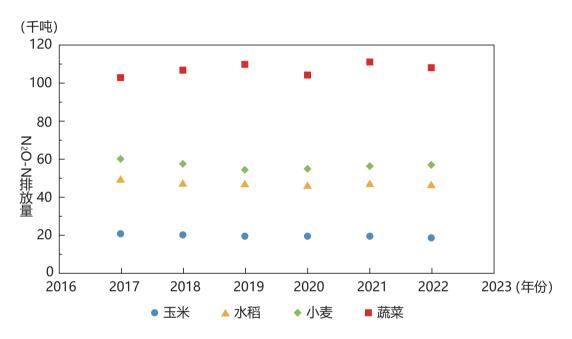


图 12 2017-2022 年中国主要粮食作物和蔬菜种植的 N2O 排放量

2022 年,中国各农区因三大作物种植面积及氮肥施用强度差异,导致 N_2O 排放比例呈现显著空间分异特征(图 13)。东北地区以玉米为主导排放源,占比达 76.1%,华北地区则小麦(38.9%)和蔬菜(37.3%)为主;西北地区排放主要来源于玉米(42.6%)和蔬菜(30.7%);长江中下游地区以蔬菜(51.6%)和小麦(23.1%)排放为主;东南地区蔬菜占比最高(82.4%);西南地区排放则集中于蔬菜(63.3%)和玉米(24.7%)。

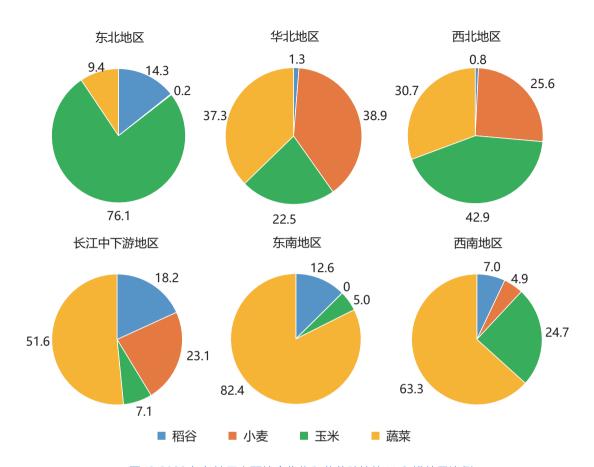


图 13 2022 年各地区主要粮食作物和蔬菜种植的 N₂O 排放量比例

2 中国氮肥消费面临的挑战与机遇

• 中国氮肥消费面临的挑战

1. 氮肥利用率总体较低,但近年来呈现缓慢回升趋势

当前全球氮肥平均利用率约为 42%, 其中以美国为代表的发达国家氮肥利用率普遍达到 60%以上, 而中国平均氮肥利用率通常在 28%-41% 之间, 低于全球平均水平及发达国家水平。

2. 氮肥过量施用严重威胁生态环境并加剧气候变化

尽管氮肥对中国粮食安全贡献显著,但其过量施用导致土壤大面积酸化,20 世纪 80 年代以来主要农田土壤 pH 值平均下降 0.5 个单位,其中 60%-90% 归因于氮肥(Guo et al, 2010)。此外,农业源氮、磷已成为导致水体富营养化的主要成因,2010 年第一次污染源普查显示其对水体中总氮、总磷的贡献率分别达 57.2% 和 67.4%(武良,2016)。同时,氮肥生产及施用产生的温室气体净排放量在 2010年达到 4.52 亿 t 二氧化碳当量 (Zhang et al, 2013),凸显其气候影响。

3. 农民对化肥的认知误区短期内难扭转

改革开放以来,化肥施用在解决国人温饱和保障国家粮食安全方面发挥了关键作用。1978—2010年间化肥投入对粮食产量增长的贡献率达20.79%(房丽萍,2013)。这种强正相关关系导致农户形成了"多施肥必增产"和"水大肥勤不用问人"等错误观念。在增产增收驱动下,农户往往盲目增加化肥用量,这种粗放型生产模式亟需通过技术培训与科学宣传引导农户观念转变。

4. 农民缺乏科学施肥和新型肥料的认知

农民年龄偏大、文化程度偏低、家庭收入水平偏低等因素制约了科学施肥知识的普及。第七次全国人口普查数据显示,中国农村60岁及以上老年人口占比高达23.81%,受城乡经济差距和就业机会影响,大量青壮年劳动力外流,导致农业生产主力为50岁以上的人群,其中60岁以上占比显著。该群体文化水平相对较低,普遍缺乏科学施肥认知,75.95%的农户不了解科学施

肥方法,79.01%的农户未掌握土壤养分状况,主要依赖传统经验施肥。尽管越来越多的高效新型肥料不断涌现,但农民对其特性与施用技术认知有限,且仍沿用粗放施肥方式,导致过量施肥问题持续存在。

5. 化肥减量增效政策执行存在基层落实不到 位问题

自 21 世纪以来,国务院及农业农村部相继 出台了"一控两减三基本¹"、化肥零增长行动等 系列政策,各地虽配套制定工作方案,但在基层 实施中存在推广覆盖面不足、技术配套不完善等 问题。农机农艺融合度不足制约了技术落地,如 侧深施肥技术因分区域试验数据缺乏、农户认知 度低导致推广受限,水肥一体化则存在水溶肥与 滴灌设备匹配度不足等技术瓶颈。此外,政策对 经营主体的经济激励不足,生态效益与农户经济 效益目标尚未有效协同,进一步削弱了执行效果。

• 中国氮肥消费面临的机遇

1. 中国双碳目标为化肥减量增效提供了政策支撑与发展导向

2020年9月22日,习近平总书记在第75届联合国大会一般性辩论中提出,中国二氧化碳排放力争于2030年前达峰,2060年前实现碳中和。2021年10月国务院印发《2030年前碳达峰行动方案》,要求分领域制定实施方案。在此背景下,农业农村部和国家发展改革委于2022年制定并发布《农业农村减排固碳实施方案》,将化肥减量增效列为重点行动,强调推进氮肥减量增效,推广水肥一体化技术和缓释肥、水溶肥等新型肥料。该方案通过测土配方施肥升级、智能化精准施肥推广等举措,构建了农业生产与生态保护的协同路径,同时配套财税扶持、科技攻关等政策机制,在保障粮食安全前提下推动农业绿色低碳转型。

^{1. &}quot;一控两减三基本" 是 2015 年农业部关于打好农业面源污染防治攻坚战的实施意见中提出的工作目标。 其中"一控",即严格控制农业用水总量,大力发展节水农业,确保农业灌溉用水量保持在 3720 亿立方米,农田灌溉水有效利用系数达到 0.55; "两减",即减少化肥和农药使用量,实施化肥、农药零增长行动。"三基本"是指畜禽粪污、农膜、农作物秸秆基本得到资源化、综合循环再利用和无害化处理。

2. 乡村振兴战略和农业农村现代化是推动化 肥减量增效的重要推手

2020 年中国脱贫攻坚战取得全面胜利后,为进一步巩固拓展脱贫攻坚成果,继续推动脱贫地区发展和乡村全面振兴,国家于2021 年将"国务院扶贫办"更名为"国家乡村振兴局",以全面推进乡村发展。在此背景下,以"乡村全面振兴"为主题的"中央一号文件"及农业农村现代化规划持续强调化肥减量增效。通过科学施肥技术推广、精准减量政策实施和绿色农业模式创新,化肥减量增效已成为农业低碳发展的核心举措。这不仅有效降低了面源污染风险,更通过节本增效提升了农业质量效益,为乡村振兴新培育了新的经济增长点,从而助力实现农业高质高效、乡村宜居宜业、农民富裕富足的发展目标。

3. 全国性的化肥减量行动加速中国实现化肥减量目标

农业农村部发布的《到 2025 年化肥减量化 行动方案》,明确了化肥减量行动的具体目标、 技术路径、区域措施 、重点任务和保障措施,提 出通过"精、调、改、替、管"五条技术路径,推广施肥新技术、新产品和新机具,全面提升科学施肥水平,力争2025年全国三大粮食作物化肥利用率达到43%²该方案还实施差异化区域施肥原则,西北和华南地区实行稳氮措施,其他地区推进减氮工作。各省据此细化制定化肥减量化行动/实施方案,全面推进化肥减量工作,形成了全国目标统一、协同推进的化肥减量工作格局。

4. 新型肥料在化肥减量增效中发挥关键作用

近年来,中国新型肥料产业快速发展,其中 缓控释肥料通过延缓养分释放提高肥料利用率, 减少施肥频次;生物肥料借助有益微生物改善土 壤生态环境,提高土壤肥力;水溶肥料凭借高养 分含量、速溶性和易吸收等优点,适配水肥一体 化技术应用。中国化工信息中心数据显示,2020 年新型肥料消费量已占肥料总消费量的20%,并 将快速增长。随着"减肥增效、绿色发展"政策 推进及农业绿色转型需求,农业生产对肥料质量、 形态、养分构成、生态环保及科学施用等方面的 要求日益提高,新型肥料的市场占比将持续提升。

^{2.} 农业农村部关于印发《到 2025 年化肥减量化行动方案》和《到 2025 年化学农药减量化行动方案》的通知 http://www.moa.gov.cn/zxfile/reader;file=http://www.moa.gov.cn/govpublic/ZZYGLS/202212/P020221201420243966057.docx

中国氮肥生产和消费的减排措施、成本与潜力

1 中国氮肥生产的减排措施及潜力

• 中国氮肥生产的减排措施

氮肥生产端的温室气体排放主要源自合成氨工艺,其中广泛应用的哈伯-博施法需在高温高压条件下进行反应,该过程属于高能耗环节。通过优化能源结构、提升工艺水平(如合成氨技术升级)及提高能源利用效率,可有效降低氮肥生产全过程的温室气体排放(表 5)。具体措施包括采用低温化学链合成氨技术降低反应能耗,以及通过煤/气头工艺改进减少单位产品碳排放系数差异。

表 5 中国氮肥行业优化能源结构和提高能源利用效率的相关技术

技术方向	主要内容
绿色技术工艺	优化合成氨原料结构,增加"绿氢"原料比例;选择大型化空分技术和先进流程,配套先进控制系统,降低动力能耗:加大可再生能源生产氨技术研究,降低合成氨生产过程碳排放
重大节能装备	 提高传质、传热和能源转换效率,提高一氧化碳变换率,用等温变换炉取代绝热变换炉 涂刷反射和吸热涂料,提高一段炉的热利用率: 采用大型高效乐缩机,如空分空压机及增压机、合成气压缩机等,采用蒸汽透平直接驱动,推广采用电驱动,提高压缩效率,避免量转换损失
能量系统优化	优化气化炉设计,增设高温煤气余热废热副产蒸汽系统:优化二氧化碳气提尿素工艺设计,增设中压系统
余热、余压利用	● 在满足工艺装置要求的前提下,根据工艺余热品位不同,分别用于副产蒸汽,加 热锅给水或预热脱盐水和补充水、有机朗肯循环发电,实现量供需和品位相匹配
公辅设施改造	根据适用场合选用各种新型、高效、低压降换热器,提高换热效率选用高效机泵和高效节电机,提高设备效率采用性好的隔热、保冷材料加强设备和管道保温
数字化改造	运用 5G 和大数据技术,推动工业互联网、大数据、人工智能和产业深度融合,从研发、生产,管理等方面实现行业数字化应用和能源效率提升

绿氨替代备受青睐:以哈珀工艺为主的传统合成氨生产工艺依赖煤或天然气等化石燃料,存在高能 耗、高碳排放问题。而绿氨生产通过利用可再生能源 (如光能、水力、风能等) 发电,将水电解制取绿氢, 并利用绿电驱动空气分离装置获取氮气,再经催化合成反应制得,其生产阶段的碳排放强度近平为零。 当前主流绿氨项目通过绿氢替代传统的煤制氢工艺,显著降低合成氨过程的碳排放。因此,绿氨被视为 实现肥料生产低碳化的关键角色,在全球范围内获得高度关注。

中国绿氨项目

自 2022 年起,中国各地绿氢绿氨项目激增,主要集中在内蒙古、东北地区等可再生能源丰富 的地区。参与企业有国家能源集团、国电投、中国能建、京能集团、中国天楹、吉电股份、三一重 能、远景科技集团等。但当前绝大部分绿氨项目基本均处于开发、在建阶段,投产企业很少。根据 调研统计,目前,国内拟建、在建及规划阶段的绿氨项目总共约90项,已披露的绿氨产能累计达 到了1310万吨/年。

面临挑战:

- 用电量与产能消耗不匹配问题 新能源电力的供应的稳定性问题
- 绿氨牛产的成本经济性问题
- 绿氨下游需求尚不明确的问题。

加强新型肥料研发和生产:新型肥料主要包含缓/控释肥料、稳定性肥料、水溶肥料、增效肥料、 微生物肥料及土壤调理剂等,其核心优势在于通过调控养分释放过程、强化根系吸收及优化土壤 - 作物 系统调控,显著提升肥料利用率高并减少肥料用量,契合"减施增效、低碳环保"的农业绿色发展目 标。近年来,随着生产技术的持续创新与工艺优化,中国新型肥料产量由 2016 年的 2339.6 万吨增长到 2022 年的 3342.55 万吨, 2022 年同比增幅达 6.6% (华经产业研究院, 2022)。

• 中国氮肥生产的减排成本与潜力

研究表明,在合成氨生产中,天然气替代煤技术的单位二氧化碳减排成本为 215 元/tCO2,减排潜 力达 3430 万 tCO2;而太阳能 / 风能制氨技术的单位减排成本较前者降低 16%(180 元 /tCO₂),且 减排潜力显著提升至 7195 万 tCO。(董金池等,2021)。这反映出可再生能源制氨在成本效益与减排 规模上具有双重优势。

表 6 不同制氢和制氨技术的减排成本及减排潜力

技术手段	技术名称	2035 技术推广 比例(%)	单位减排成本 (元 /tCO ₂)	减排潜力 / (万 tCO ₂)
燃料替代	太阳能 / 风能制氢技术	8	345	2585
<i>然</i> 补台10	太阳能 / 风能制氨技术	30	180	7195
	水解制氢替代煤制氢	8	1340	2585
原料替代	天然气制氢替代煤制氢	15	440	2710
	天然气替代煤生产氨	30	215	3430

调整能源结构:研究表明,通过能源调整可使氮肥系统全生命周期 CO_2 当量排放减少 59%。在减少氮肥需求、施用氮肥抑制剂和推广脱碳技术的协同作用下,预计到 2030 年和 2060 年,中国氮肥系统全生命周期 CO_2 e 排放量将分别减少总排放量的 73% 和 78% (Luo et al, 2024)。

绿氨:作为中国氮肥系统低碳转型的关键减排路径,通过绿电或绿氢替代传统合成氨工艺可显著提高中国氮肥生产的去碳化水平。研究表明,到 2030 年和 2060 年,采用绿氢路线可使全行业 CO₂e 排放分别减少 6% 和 31%,而绿电路线则可实现 42% 和 43% 的减排量 (Luo et al, 2024)。

优化氮肥产品结构:不同氮肥品种生产过程的温室气体排放存在差异,优化氮肥产品结构可有效减少生产阶段的碳排放。研究表明(Li et al, 2023),在维持现有氮肥施用水平下,若以15%的硫酸铵替代15%尿素,每年可减少生产环节排放13.1Tg CO₂e;采用尿素硝酸铵替代尿

素则能实现每年减排 7.3Tg CO_2e ,而硝酸氨替代尿素对生产过程的排放影响不显著,主要是因为其生产过程伴随 N_2O 排放。中国氮肥以尿素为主,若采用硫酸铵、硝酸铵及尿素硝酸铵等替代尿素,每年可实现总减排 32.4 Tg CO_2e ,其中生产过程减排达 7.48 Tg CO_2e 。通过应用 N_2O 分解技术,硝酸铵生产过程的碳排放强度可降至 3.0 t CO_2e t^1 N。

依据现有研究,氮肥行业节能减排路径可归纳为以下三方面:一是提升能源利用效率,通过优化生产装置运行条件、开发余热余压综合利用技术,并推动能源清洁低碳化转型,逐步提高绿电使用比例;二是改进氮肥生产原料结构及生产工艺,采用天然气、绿氨、生物质等低碳原料,推广节能型全循环尿素生产技术,同时开发缓控释肥、增效肥料等高效产品;三是完善政策体系与管理机制,制定氮肥行业低碳发展技术路线图,健全碳排放标准及监测体系,强化财税补贴与绿色金融支持,建立激励机制,引导产业布局优化。

2 中国氮肥消费的减排措施与潜力

• 中国氮肥消费的减排措施及减排潜力

中国每年因化学氮肥施用导致的土壤 N_2O 排放量达 20 万吨纯氮,约占全国土壤总排放量的 43%。大量研究表明,采用缓控释肥、硝化/脲酶抑制剂、功能型肥料等新型肥料,结合氮肥优化管理及有机肥替代氮肥等措施,可有效提高氮肥利用率、减少氮肥用量,从而降低土壤 N_2O 排放。

缓控释肥: 研究表明,与常规施肥相比,施用控释肥 N_2O 总排放量下降 26.5%(GAO et al., 2018); Shakoor 等研究发现,在中国东部稻麦种植系统应用缓释肥料,可使小麦和水稻的 N_2O 排放量分别显著减少 16.94~21.20%和 5.55~7.93%,同时实现作物产量最大化(SHAKOOR et al., 2018)。研究预测至 2060年,缓释肥可减少 330 万吨当量非二氧化碳温室气体(CH₄和 N_2O)排放(CHEN et al., 2022)。研究表明(Xia 等,2017),控释氮肥施用可使中国主粮作物氮肥利用率平均提高 34%, N_2O 排放降低 38%(水稻:-50%;小麦:-35%;玉米:-25%)(表 7)。

硝化/脲酶抑制剂: 脲酶抑制剂通过抑制尿素水解延缓铵态氮释放,硝化抑制剂则可抑制铵态氮的硝化作用,两者单独或协同施用均可延长氮肥肥效期。氮肥配施硝化抑制剂可使农田 N_2O 排放量降低 38.66%,作物产量提升 7.31%,作物氮素吸收量和氮肥利用率分别提高 10.97%和 25.64%。在不同类型硝化抑制剂中,DMPP的 N_2O 的减排效果最显著 (57.30%),其次为 CP (35.07%)和 DCD (32.28%)(康丽霞等,2024)。

功能型肥料:水溶肥借助水肥一体化技术实 现精准施肥, 将肥料利用率从传统施肥的 30%-50% 提升至 60%-90%,减少土壤磷无效态固定 和氮素挥发,利用率可提高 20%-30%,其对于 温室气体的固定在全球尺度对铵态氮固定效率普 遍高于硝态氮; 微生物肥料通过固氮解磷、调控 氮循环和降解污染物,降低氮肥用量 20%,在豆 科作物中可减少氮肥施用量 30%-50%, 在全球 减少 N₂O 排放量可达 30%-56%%; 腐植酸/海 藻酸肥料则通过改良土壤结构、螯合养分和增强 抗逆性,可使水稻、小麦等粮食产物增产8%-15%, 盐胁迫条件下可减少水稻损失 28%, 可 增加有机碳含量 10%-30%,配合化肥减量 20% 可降低 GWP20%-40%; **脲铵氮肥**通过多形态氮 协同、中微量元素整合及缓控释技术、显著减少 NH4和 N2O 排放,与传统尿素对比可提高氮利用 率 70%~85%, 并在粮食经济作物中可实现增产 10%~30%,同时补充镁、锌、硫等中微量元素, 提高植物光合利用效率和抗逆性,并减少土壤酸 化。

优化氮肥管理: 氮肥优化管理的 "4R" 策略包括选择适宜的氮肥品种 (Right source), 采用正确的氮肥用量 (Right rate), 选择最佳施肥时间 (Right time)及施用在正确的位置 (Right place)。采取以"4R"为核心的氮肥优化管理措施,对农业碳中和的实现和农业环境可持续发展具有重要意义。研究表明 (Xia 等, 2017), 降低基肥比例、增加追肥次数均能促进作物生长后期对于氮素的大量吸收,分别提高主粮作物氮肥利用率8%和30%,并减少土壤N,O排放5%和8%;

基于配方施肥确定的**氮肥用量**较传统用量减少 28%,可使土壤 N_2O 排放总量降低 31%(水稻: -41%;小麦: -26%;玉米: -30%);**氮肥深施技术**可促进作物根系对氮素的吸收,使主粮作物氮肥利用率提高 29%,土壤 N_2O 排放降低 15%(水稻: -17%;小麦: -13%)(表 7)。因此,实施以"4R"为核心的氮肥管理措施对提升农业碳中和能力及促进农业环境可持续发展具有重要作用。

表 7 中国主要减排措施增产率及 N₂O 减排潜力

减排措施	产量				N₂O 排放			
	总量	玉米	小麦	水稻	总量	水稻	玉米	小麦
控释肥	8.0%				-38.3%	-50.4%	-25.3%	-35%
硝化抑制剂	10%	6.5%	12.1%		-39.8%	-51.0%		-31.8%
脲酶抑制剂	7.1%				-27.8%		-37.0%	-11.9%
最优施氮量	1.3%				-31.2%	-41%	-30%	-26%
增加施用氮肥频次	5.9%	4.5%	4.0%	8.1%	-5.4%	-4.0%		-20.4%
氮肥深施 >5cm	6.9%				-14.6%	-17%		-13%

注: 数据来自 Xia et al. 2017

有机肥替代氮肥: 生物有机肥替代矿质氮肥是一种可兼顾作物增产和 N_2O 减 排的环境友好型施肥策略,其通过调节土壤氮循环功能基因丰度,降低硝化与反硝化过程的 N_2O/N_2 产物比,从而实现减排增效双重目标。与施用矿质氮肥相比,施用生物有机肥的 N_2O 减排潜力为 42.25%,增产潜力为 15.52%(田伟等,2024)。 在等氮量条件下(N 225 kg/ha),黄淮海平原小麦 - 玉米轮作农田中,单施猪粪、鸡粪或牛粪的周年 N_2O 排放总量 (1.85~2.51kg/ha) 较单施化肥处理 (2.85 kg/ha) 降低了 11.9%~35% (李燕青等,2019)。

• 中国氮肥消费的区域减排潜力分析

基于各省氮肥施用强度确定氮肥减排技术 (包括控释肥、硝化/脲酶抑制剂及 4R 管理策略)的采用率(Gu et al. 2023),结合各单项技术的 N_2O 减排效率(Xia et al. 2017),计算得到 2022 年各区域的 N_2O 减排潜力(表 8)。

长江中下游地区水稻种植导致的 N_2O-N 排放量为 10.2 干吨。研究表明,通过控释肥技术可降低 N_2O 排放量 23.1%-33.2%,施用硝化抑制剂可以降低 23.4%-33.6%,优化施肥措施(氮肥减施 28%)可降低 17.51%-20.97%,深施氮肥

(>5cm) 可降低 7.26-8.7%,而增加氮肥施用 频次可降低 1.71-2.05% 的排放。

华北地区和长江中下游地区小麦种植引起的 N_2O-N 排放量分别为 23.04 和 13.07 千吨。应 用控释肥技术可分别使两区域 N_2O 排放量降低 18%-25% 和 20.3%-27.3%,施用硝化抑制剂可分别实现 16.4%-22.8% 和 18.4%-24.8% 的 N_2O 减排效果; 施用脲酶抑制剂可分别降低 6.1%-8.5% 和 6.9%-9.3% 的 N_2O 排放,而 4R 技术的应用 在两地区可实现 6%-15% 的减排幅度。

在东北、华北和西北地区玉米种植中, N_2O-N 排放量分别为 15.86、13.34 和 14.67 干吨。新型农艺措施在相应区域的 N_2O-N 减排潜力分别为: : 在东北和华北地区应用控释肥可降低 10.1%-15.2%,施用脲酶抑制剂可降低 14.8%-22.2%,优化氮肥施用壳降低 12%-15%;在西北地区应用控释肥可降低 15.2%-20.2%,施用脲酶抑制剂可降低 22.2%-29.6%,优化氮肥施用可降低 15.6%-17.1%。

表 8 2022 年中国三大作物的 N₂O-N 排放总量及氮肥施用技术带来的减排潜力

	排放总量					氮肥施用	技术带来的	的 N₂O 减	非潜力 %				
	(干吨)	控料	¥肥	硝化排	印制剂	尿酶排	印制剂	增加施	用频次	最优於	他氮量	深施:	>5cm
水稻		下限	上限	下限	上限	下限	上限	下限	上限	下限	上限	- 下限	上限
东北地区	2.98	20.2	30.2	20.4	30.6			1.60	2.00	16.40	20.50	6.80	8.50
华北地区	0.75	29.7	39.8	30.1	40.3			1.98	2.19	20.29	22.44	8.41	9.31
西北地区	0.26	22.4	32.5	22.7	32.9			1.69	2.04	17.32	20.96	7.18	8.69
长江中下游地区	10.28	23.1	33.2	23.4	33.6			1.71	2.05	17.51	20.97	7.26	8.70
东南地区	2.75	20.2	30.2	20.4	30.6			1.60	2.00	16.40	20.50	6.80	8.50
西南地区	2.27	20.2	30.2	20.4	30.6			1.60	2.00	16.40	20.50	6.80	8.50
小麦													
东北地区	0.04	16.4	23.4	14.9	21.3	5.6	8.0	8.86	10.55	11.29	13.45	5.65	6.72
华北地区	23.04	18.0	25.0	16.4	22.8	6.1	8.5	9.34	10.79	11.90	13.75	5.95	6.88
西北地区	8.76	22.4	29.4	20.3	26.7	7.6	10.0	10.8	11.8	13.75	15.05	6.87	7.52
长江中下游地区	13.07	20.3	27.3	18.4	24.8	6.9	9.3	10.0	11.1	12.74	14.17	6.37	7.09
东南地区	0.01	20.8	27.8	18.9	25.3	7.1	9.5	10.2	11.2	12.94	14.27	6.47	7.13
西南地区	1.59	18.1	25.1	16.5	22.8	6.2	8.5	9.36	10.80	11.93	13.77	5.97	6.88
玉米													
东北地区	15.86	10.1	15.2			14.8	22.2			12.00	15.00		
华北地区	13.34	10.1	15.2			14.8	22.2			12.00	15.00		
西北地区	14.67	15.2	20.2			22.2	29.6			15.60	17.11		
长江中下游地区	4.03	11.2	16.3			16.4	23.8			12.64	15.32		
东南地区	1.09	10.1	15.2			14.8	22.2			12.00	15.00		
西南地区	7.99	13.3	18.4			19.5	26.9			13.91	15.96		

综上,基于中国氮肥消费的减排措施与潜力分析,新型肥料(控释肥、硝化抑制剂、脲酶抑制剂及功能型肥料)、优化氮肥施用及有机肥替代氮肥是三大粮食作物种植体系的核心技术。未来需集成多种氮素优化管理措施(如平衡施肥、有机无机配施与硝化/脲酶抑制剂协同应用),以增强生态系统氮持留能力,系统性降低氮损失风险。同时,应结合各区域种植结构特征,实施精准施肥技术(包括机械深施、水肥一体化),推进缓控释肥与抑制剂增效技术集成创新,构建"精准-智能-绿色"的现代施肥技术体系,实现化肥减量增效与农业低碳发展。

中国氮肥生产和消费的利益相关者分析

氮肥行业产业链由原材料供应、生产加工及下游应用三大环节构成。上游以天然气、煤炭、合成氨等基础原料为主;中游通过煤气化、合成氨转化及尿素合成等工艺,形成铵态氮肥、硝态氮肥、酰胺态氮肥等多种主要产品形态;下游应用覆盖农业种植、林业培育、园艺管理、畜牧养殖及工业生产等多个领域。该产业链涉及政府部门、生产企业、农业经营主体、科研院所、行业协会、金融机构、社会组织、化肥经销商等多方利益相关主体,形成协同发展的产业生态。

政府部门

主要负责制定化肥生产和消费的相关政策法规及行业标准,发布行业发展指导意见,实施化肥税收优惠和关税管理,通过补贴措施支持氮肥产业升级,并牵头制定化肥减量增效方案,统筹推进农业面源污染治理。不同政府部门的具体职责参考表 9,地方政府则依据中央政策框架落实具体措施,详细职责划分参见表 9。

表 9 中国氮肥行业相关的政府部门及相关职责

部门名称	具体职责	政策文件
中共中央、 国务院	发布化肥流通体制改革决定; 发布土壤污染防治行动计划; 发布水污染防治行动计划	国务院关于改革化肥等农业生产资料流通体制的通知(1994)国务院关于进一步深化化肥流通体制改革的决定(2009)国务院关于印发土壤污染防治行动计划的通知(2016)国务院关于印发水污染防治行动计划的通知(2015)
工业和信息 化部	协调保证化肥生产、监督和预警 化肥市场变化、发布化肥行业转 型发展指导意见等	工业和信息化部关于促进化肥稳定生产的紧急通知(2009)《关于推进化肥行业转型发展的指导意见》2015
财政部	发布尿素产品增值税管理 相关通知	財政部/国家税务总局关于暂免征收尿素产品增值税的 通知 2005
国家发展改革委	化肥价格管理和监管、化肥淡季 商业储备管理、发布化肥运价政 策、双碳目标和行动方案制定	 《关于进口化肥价格管理有关问题的通知》2005 《关于进一步加强化肥价格监管的通知》2004 《化肥淡季商业储备管理办法》2005,已经废止 财政部/发改委:关于改革化肥价格形成机制的通知2009 关于推进化肥用气价格市场化改革的通知2016 国家化肥商业储备管理办法2020 《关于缓释肥料等执行农用化肥铁路优惠运价政策的通知》2021 《合成氨行业节能降碳专项行动计划》2024

部门名称	具体职责	政策文件
农业农村部	肥料登记审批管理; 化肥零增长 行动; 推广普及科学施肥技术和 措施; 制定发布化肥减量增效行 动方案	 肥料登记管理办法 2017 《2013 年测土配方施肥补贴项目实施指导意见》 《到 2020 年化肥使用量零增长行动方案》2015 《肥料登记审批标准》及《肥料登记行政许可项目网上申报程序》 《推进水肥一体化实施方案 (2016—2020 年)》 《到 2025 年化肥减量化行动方案》2020
生态环境部	化肥清洁生产 农业面源污染防治	●《农业农村污染治理攻坚战行动方案(2021—2025 年)》
商务部	化肥关税配额分配	●《中华人民共和国货物进出口管理条例》 ● 2019 年化肥进口关税配额总量、分配原则及相关程序
国家税务 总局	进口化肥税收政策	●《财政部、国家税务总局关于进口化肥税收政策问题的通知》
国家质量监 督检验检疫 总局	对化肥产品的质量和安全的 监督检验和管理	● 化肥产品生产许可证实施细则 (一)
铁道部	化肥运价管理	● 关于调整铁路货物运输价格的通知 2012
海关总署	化肥进口关税配额管理 淡旺季差别化化肥出口关税政策 调整化肥进口税率	化肥进口关税配额管理暂行办法 2002公告 2008 年第 63 号 (关于调整化肥类产品特别出口关税)《2012 年关税实施方案》
国务院关税 税则委员会	化肥关税管理	●关于 2014 年关税实施方案的通知 ●国务院关税税则委员会关于 2019 年进出口暂定税率等调整方案 的通知

企业

氮肥生产企业主要负责氮肥生产与供应,致力于研发新技术、开发新产品及推广新型肥料等,同时积极响应国家政策,推动行业节能降耗与绿色转型。中国现有约600家氮肥生产企业,其中以煤炭和天然气为原料的企业分别占72%和26%。气头企业主要分布于四川、云南及贵州等地,如泸天化、云天化和赤天化等,以及中石油、中石化下属企业,均围绕气源布局。煤头企业则以块煤为主要原料,集中在在山西、河南等煤炭资源丰富地区。规模较大的企业包括云天化股份、湖北宜化、中化集团、瑞星集团、吴源化工、三宁化工、心连心化学、恒升化工、泸天化股份等。2024年中国氮肥行业上市企业主要有华鲁恒升、泸天化、阳煤化工、四川美丰和赤天化。

科研机构

科研机构(包括国家及地方层面的大学、研究所等)的工作重点涵盖氮肥生产端与消费端的双重技术研究:生产端开展工艺改造与升级、研发新型氮肥生产与环保技术;消费端则聚焦高效施肥技术、设

备研发及科学施肥等研究。科研机构的核心职能包括协助政府制定行业标准,并为政策制定、企业实践 提供技术支撑与决策建议(表 10)。

表 10 中国氮肥行业相关的重要科研机构

	名称	研究方向
生产端	清华大学	化学工程系: 合成氨工艺优化、新型催化剂开发、氮肥生产节能减排技术研究
	天津大学	合成氨反应器设计、高效分离技术、工业流程优化
	华东理工大学	合成氨催化剂创新、绿色化工工艺开发
	中国科学院	过程工程研究所: 合成氨工艺流程优化、工业废气资源化利用
	中国石油化工科学研究院	氮肥生产工艺改进、工业装置能效提升
	北京化工大学	电催化还原氮气合成氨
消费端	清华大学	环境学院: 氮肥生产中的污染控制、农业面源污染治理研究
	中国农业大学	资源与环境学院: 氮肥科学施用技术、农田氮素循环与减排研究
	中国科学院	生态环境研究中心: 氮肥生产的环境影响评估、污染治理技术
	中国农业科学院	农业资源与农业区划研究所: 氮肥减量增效技术、农田精准施肥模型,新型肥料产品开发等
	南京农业大学	资源与环境学院:新型肥料研究
	华中农业大学	资源与环境学院:农田 N₂O 减排研究,农业温室气体排放 清单等

农业经营主体

中国农业呈现"大国小农"的基本格局,小农户占农业经营主体的80%以上。自1978年家庭承包责任制(HCRS)实施以来,中国98%的农田被分配给2亿多农户。根据第二次全国农业普查数据,2006年中国户均耕地规模约为0.4ha,经营面积50亩(3.3ha)以下的农户仍有2.6亿户,10亩(0.7ha)以下的农户占85.2%,表明小农户仍是中国更为广阔的农业生产主体,且分散化小农经营将在中国长期存续(赵昶等,2021)。小规模经营被普遍认为是农业生产力低

下的主要原因。为推进规模经营,1984年中央1号文件提出土地向种植能手集中,此后涌现出种粮大户、合作社、家庭农场、农业龙头企业等为代表的新型农业经营主体。随着土地流转加速,小农户比例逐年下降,以种植大户为代表的新型农业经营主体成为中国农业发展的重要力量。截至2019年,全国承包土地流转面积已超1/3,年新增267多万公顷(刘大鹏等,2019)。研究表明,规模化经营主体通过标准化生产和技术应用,显著减少了化肥投入(王全忠等,2013;李宾等,2017;诸培新等,2017)。2020年后,

中国重点转向培育家庭农场和农民合作社。 截至 2024年,全国种粮家庭农场达 176.5万个,合作社 54.2万家,占新型农业经营主体的 37.5%(农业农村部,2024)。此外,国有农场作为现代农业示范主体,2023年农场数量达 1776个,管理耕地面积 7207.5千公顷,占中国耕地面积的 5.6%(中国统计年鉴,2024)。综上,中国已形成小农户、种粮大户(主业户)、家庭农场、农业合作社、国有农场等多元主体并存的农业经营体系。

金融机构

金融机构指从事金融业务的中介组织,涵盖银行、证券和保险。其主要通过直接资金支持或间接融资服务支持实体经济发展。例如,政策性银行(如中国农业发展银行、国家开发银行)重点支持基础设施建设、农业技术升级及绿色转型;商业银行(如中国农业银行、中国邮政储蓄银行)则为企业和个人提供综合性金融服务。金融机构在支持氮肥企业稳定生产和技术创新方面发挥着关键作用,尤其在企业面临能源成本波动和转型压力时提供重要资金保障。2024年农业农村部召开肥料企业科技创新座谈会后,金融机构开始探索多元化支持模式,其中包含提供信贷支持与解决融资瓶颈、创新金融工具应用、知识产权押融资、供应链金融等关键支持,可在企业现金流面临严峻挑战时成为保障企业持续生产的关键因素。

社会组织

社会组织是指在民政部门依法登记的社会团体、民办非企业单位(社会服务机构)和基金会的统称。行业协会作为行业性社会团体,发挥政企间桥梁作用,承担咨询、沟通、监督、协调、技术推广及专业培训等职能,其需在民政部门依法登记注册,如中国石油和化学工业联合会、中国石油学会、氮肥工业协会、中国植物营养与肥料学会等。国际非政府组织主要参与技术交流、资金支持及研究合作,而国内的非政府组织以则侧重推动技术应用与人才培育等。

化肥经销商

经销商是连接化肥、氮肥生产与农户应用的中间环节,在新型肥料推广、推荐农民采购肥料品种、甚至指导农民肥料施用方法方面都发挥中重要作用。化肥经销商不仅在从化肥厂购买化肥之前了解了化肥功能、施用方法等信息,还会推荐农民新型肥料、指导农民如何施用,从而使农民能尽早的了解新型肥料产品,有些化肥经销商还会给农民提供一定的培训,尤其是新型的肥料产品。然而,化肥经销商的主要目的是销售肥料,未来应加强化肥经销商的培训和赋能,使其掌握科学施肥的方法和技术,了解不同肥料的环境效益,从而将其多销售化肥获利的唯一目标转向考虑化肥的环境效益的多重目标,通过给农民推荐环境友好的新型肥料,指导农民合理施肥,达到增产和保护环境的双赢目标。

06

发展建议

基于对中国氮肥生产和消费过程中 N_2O 减排分析,针对不同的利益相关者提出氮肥行业低碳转型建议:

• 政府部门

1. 强化部门协同机制, 重点推进工业和信息 化部、农业农村部、国家发展改革委与生态环境 部的政策衔接。

氮肥产业链涵盖生产、运输、施用及环境监管等环节,需依托各职能部门分工:工业和信息化部主导行业规划制定、技术标准实施及生产环节监管;农业农村部负责肥料登记管理、施用技术推广及减量政策落实;国家发展改革委承担价格调控与产能布局优化;生态环境部统筹污染防治与排放监管。鉴于单一部定的政策和行动,都难以覆盖全产业链治理需求,建议加强多政府部门合作,建立部际联席会议制度,在清洁生产技术推广、化肥减量增效方案实施、环境税制改革等领域形成政策合力,构建覆盖"生产-流通-消费-环境反馈"的协同治理体系。

2. 制定氮肥行业低碳技术路线图

中国氮肥生产以煤炭为主要原料,约 1/5 的企业采用天然气工艺,但两者均属于化石能源且伴随显著碳排放。在当前低碳发展背景下,氮肥行业正加速探索绿氨等新型技术路径。绿氨作为零碳燃料,其生产通过可再生能源电解水制氢并与氮气合成,全生命周期无碳排放。国际绿氨产业化进程较快,沙特、印度等地已建成商业化项目;

中国近半年绿氢绿氨项目激增,但绝大部分绿氨项目基本均处于开发、在建阶段,投产企业较少。据统计,国内目前拟建、在建及规划阶段的绿氨项目共约90项,已披露的绿氨产能累计达1310万吨/年。然而,当前绿氨发展面临三大瓶颈:一是生产需匹配大量绿电,但国内风光项目单体规模普遍不足200MW,难以支撑规模化连续生产;二是新能源电力波动性导致合成工艺稳定性不足,需配套储能设施或电网兜底,推高系统复杂度;三是绿氨成本为传统煤基氨的2-4倍,短期内缺乏经济竞争力。建议通过制定氮肥行业低碳技术路线图,重点提升现有煤/气头装置能效,推广干煤粉气化、余热梯级利用等成熟技术,提高氮肥生产效率,加速绿氨示范项目落地,研发柔性合成工艺,构建多路径协同的低碳技术体系。

3. 完成氮肥产业的战略性转型

中国氮肥产业的区域布局与转型路径呈现出显著的战略特征。当前,氮肥产能高度集中于黄河流域、长江流域及沿海地区,这些区域依托地理区位优势、丰富的自然资源、发达的农业基础条件以及完善的工业配套体系形成了产业集聚效应。然而,其中位于黄河流域的中西部地区受制于经济水平和技术能力,产业结构调整面临较大挑战。基于产业发展新趋势,该地区需重点围绕原料资源禀赋、物流基础设施条件及农业市场临近性等纬度实施区域布局优化。实现产业成功转型的核心要素包括:具有成本优势的低碳能源供给体系(如可再生电力、生物甲烷及绿氢)、完

善的二氧化碳捕集与封存基础设施,以及港口区位与水资源保障能力。值得注意的是,随着低碳氮肥技术的突破性进展(如碳捕集联产增效技术),传统以煤/气为主的原料结构正在向多元化方向演变,这要求产业布局必须适应技术变革进行动态调整。

4. 完善碳排放政策和标准,健全碳市场激励 机制

中国自 2021 年启动全国碳排放权交易市场 以来, 已出台《碳排放权交易管理暂行条例》等 多项政策和标准。然而, 当前碳市场仍存在覆盖 范围有限、行业标准不健全等问题,尚未充分激 活减排潜力。 首先,中国碳交易市场目前已覆盖 电力, 水泥、钢铁和电解铝行业扩容计划。其次, 因以煤基原料为主, 氮肥行业碳排放强度显著高 干天然气工艺,但其碳排放核算标准与能效限额 仍沿用宽松指标,缺乏强制性减排约束,导致企 业参与碳交易的动力不足。因此,建议加快健全 碳市场制度:优先将氮肥行业纳入碳排放核算与 交易体系,制定强制性减排标准;完善配额分配 机制,强化履约监管,通过政策引导激发企业减 排积极性。通过政策与市场的协同作用,可推动 氮肥行业低碳转型,提升全国碳市场的行业覆盖 深度与减排效能。

5. 利用政策工具规范农业经营主体的施肥 行为

当前中国小农户在农业生产中占比较高,但 其施肥行为普遍缺乏规范性。针对这一群体,建 议通过经济激励型政策(如定向补贴),引导其 基于目标成本收益权衡优化化肥施用强度、结构 与施肥方式。对于种植大户、农业合作社和家庭 农场等规模化经营主体,需强化科学施肥技术培 训并配套农机设备购置补贴,推广无人机、智能 变量施肥等精准施肥技术,以降低氮肥施用量。 同时,利用政策补贴来引导市场走向,例如发放 农户"耕地地力保护补贴"、开展主粮食作物低价收购政策等,从而促使农户和企业选择高性价比、效果稳定的肥料产品,更加侧重于种植成本与效益。

6. 尽快落实氮肥定额制度

氮肥定额是在特定的气候-土壤-作物体系 中, 基于既定经营管理措施(轮作与耕作、品种 选择、灌溉模式等),既能实现目标产量与经济 效益、维持或提升土壤肥力,又能将环境排放控 制在可承受范围内的最大氮肥施用量。该制度是 当前调控氮肥(包括有机肥)施用强度最有效的 方法。2020年中国农业农村部种植业管理司在全 国层面上首次发布了水稻主要产区的氮肥施用定 额,后又相继发布了小麦、玉米、油菜、苹果、 茶叶等六类作物的氮肥定额标准。然而当前中国 尚未形成系统化的施用机制。亟需结合农业生产 特点创新化肥施用管理体系,完善监管和调控路 径,建立多尺度的管理指标、标准及运行机制。 建议成立中央与地方层级的化肥定额工作组,系 统构建覆盖不同作物和区域的化肥定额标准,并 依据品种更新、栽培技术进步等动态调整定额标 准。

7. 构建大数据平台

农业与化肥施用在未来的发展将聚焦于智能化与信息化,对未来作物田间养分管理至关重要。通过打造大数据平台,利用大数据、云技术、GIS及人工智能等先进科技技术,帮助企业与农户增效,同时助力于为农户 - 企业 - 经销商等全链条利益相关方构建全方面信息平台,实现数据与信息同步,更加有效推动可持续农业发展。

企业

1. 积极推动绿氨替代灰氨

当前主流的可再生能源发电制绿氢 - 绿氨项目通过利用可再生能源制氢替代原有的煤制氢工

艺,其生产阶段的碳排放量趋近于零。对于农作物残渣等废弃生物质资源丰富的地区,可利用生物质原料制取氢气作为合成氨的补充氢源。

2. 优化氮肥产品类型

过去半个世纪,中国氮肥品种已从单一形态转向复合肥、缓释肥、控释肥等新型多形态品种。但当前中国的氮肥产品结构存在显著失衡,酰胺态氮与铵态氮产品占据90%以上的市场份额,其中以高环境成本的普通尿素为主导产品,形成了以"尿素为主、高浓度复混肥施用比例持续攀升、有机肥基本弃用"的格局。然而,随着农业生产者对高效环保肥料的需求日益增长,化肥企业需结合农业生产实际,加快氮肥产品类型优化升级,重点开发环境友好型高效肥料,以满足农业生产需求。

3. 加强新型肥料研发和生产

研究表明,相较于等养分常规施肥处理,施用新型肥料可显著提升作物产量及养分利用效率,同时可有效降低氮素环境损失。具体而言,增产幅度可达 4.6% ~ 17.5%,氮肥利用率提升幅度达 16.8% ~ 52.3%,农田土壤氨挥发量减少 7.2% ~ 50.7%,N₂O 排放量降低 8.1% ~ 40.8%,氮淋溶损失降低 16.5% ~ 43.8%,氮径流损失降低 22.1% ~ 45.4%(丁文成等,2023)。以缓/控释肥、水溶性肥料、微生物肥料等为代表的环保高效新型肥料,已成为推动肥料产业结构调整升级的重要方向。

4. 农产品企业开展碳足迹分析减少产品全产 业链的温室气体排放

农产品企业无论是其原材料还是产品都与农业相关,而农业尤其是化肥的施用和畜牧业养殖都是主要的温室气体排放源,因此为了减少温室气体排放,农产品企业需要制定碳减排的战略和目标,开展全产业链的碳足迹分析,识别主要的

排放源,采取有效的温室气体减排行动,降低产 品碳排放。

• 农业经营主体

1. 科学施用新型肥料

随着越来越多化肥企业加大新型肥料研发和生产力度,多种新型氮肥产品已实现规模化应用。建议农业经营主体根据作物需肥规律,科学选择氮肥品种,优先选用缓控释氮肥、添加脲酶抑制剂的尿素、添加硝化抑制剂的铵态氮肥等新型肥料,并结合有机肥施用。

2. 推进有机肥替代化肥应用

有机肥在农业生产中占据重要位置,可改善土壤理化性状,提高土壤微生物总量,调节作物生长发育,促进作物对养分的吸收利用。中国有机肥种类丰富且资源充足,但存在资源化利用效率低、浪费严重等问题。因此,需强化秸秆、畜禽粪肥等农业废弃物的肥料化利用。

3. 调整和优化作物种植结构

通过优化种植结构、实施轮作休耕及间作套种等措施,可有效提高土壤肥力,从而减少氮肥投入。具体而言,种植固氮作物可通过生物固氮作用将大气中的氮气转化为植物可利用的铵态氮,结合轮作或间作套种的田间配置优化,可显著增加土壤氮素含量,减少氮肥施用量。此外,种植覆盖作物作为绿肥亦可提升有机氮投入。

4. 健全农业社会化服务体系

农业社会化服务通过专业化分工将农业生产各环节交由专业的服务机构或个人来完成,实现农业生产的集约化与专业化。 针对小农户无力承担高额农业机械购置费用问题,可依托农业社会化服务组织提供耕作、施肥、植保等环节的专业化服务,如采用无人机开展精准施肥作业。该服务体系不仅能够缓解农村劳动力短缺压力,还可显著提升农业生产效率。通过整合肥料企业的农

化服务资源、协同国家及地方的土壤肥力监测管 理部门与农业科技推广部门的工作,构建多层次、 多主体协同联动的农业社会化服务组织体系,同 时开展农化服务组织的赋能培训,为农业生产提 供全方位技术支撑。

5. 加强土地流转,推动农业规模化发展

传统农业因种植面积分散,种植者依赖传统 经验盲目施肥,导致肥料浪费严重。应通过土地 流转实现土地集约化经营,将耕地集中至技术优 势主体(如家庭农场、农民专业合作社等),以 促进科学定量施肥并降低化肥用量。

• 科研机构

1. 强化新型肥料研发和生产

重点研发高效环保、经济适用的新型肥料产 品及配套施肥技术,加强新型肥料配套施肥设备 的智能化研发。

2. 深化肥料工业与农业科研的产学研协同 创新

通过整合肥料制造技术研究机构(如高校及工业科研院校)与农业领域土壤-作物系统研究机构(如区域农业科研单位)的学科优势,联合开展基于区域土壤特性、作物需肥规律及种植模式的氮肥产品研发,重点开发缓释型、增效型等精准适配的氮肥品类,从而在保障作物产量的前提下实现氮肥利用率提升与施用量降低。

3. 提供科学服务

为农民、种植大户、农民农业合作社等新型 农业经营主体提供科学施肥技术培训与氮肥定额 施用指导,规范氮肥运筹管理。

• 金融机构

1. 设立专项补贴资金

支持化肥企业研发生产新型肥料;引导农民应用新型肥料及绿色施肥技术。建立氮肥绿色

补贴分级制度,例如基础补贴:对总养分利用率 ≥ 40% 的增效氮肥(如含脲酶抑制剂),按销量补贴;溢价补贴:对水溶肥、飞防专用肥等特种产品,额外补贴。研究建议,应持续加大对绿色农资的生产主体、服务进行奖励补偿,降低整体及使用成本。

2. 建立农业生态补偿机制

对实施氮肥减量措施、保护与改善农业生态环境的农户及新型农业经营主体,依据生态保护成本与生态系统服务价值核算结果给予差异化生态补偿。同时,通过核算农户生产经营等过程中的环保投入,对提供正向反馈的农业生产者给予或加大补贴,以此来鼓励农户更靠近农业绿色转型。

3. 优化绿色信贷机制

利用金融资源,优化相关产品创新,提供相应信贷支持,为生产和消费提供必要支持保障,围绕重点要素提供农业信贷保障,提升效率。不断完善金融产品创新,制定绿色融资指引,明确低碳技术认定标准。对采用绿电制氨、CO₂ 回收利用的企业给予利率优惠和优先放款待遇,为农户和企业提供更多选择。同时,引导绿色转型,将环保绩效和低碳技术应用纳入信贷评审体系。例如环保绩效和低碳技术开始逐步纳入信贷评审体系,对采用绿电制氢合成氨、碳捕集利用等低碳技术的项目提供优先贷款支持,进一步帮助行业、企业实现绿色转型。

4. 提供综合金融科技支持

建立完善数字化平台工具,通过大数据等科技手段帮助更多农户和企业,解决企业融资困难、信贷问题,整合物流、资金流、票据流信息,为上游供应商提供应收账款融资,帮助农户及时应对潜在风险,为农业转型提供动能,提升效率。

5. 创新风险缓释工具

推动政策性担保机构设立"氮肥技改专项担

保基金",覆盖项目融资风险的,并针对拥有专利技术的肥料企业提供抵押帮助来缓解资金压力; 试点"科技创新债券",支持龙头企业发行中长期债务工具,募集资金用于液固肥联产、增效剂添加工艺等关键技术研发。对参与"十五五"科技攻关的企业,银行应建立专属审批通道,缩短评估周期。

• 社会组织

1. 国际先进经验共享机制建设

构建多维度国际合作平台,系统引入国际先进经验。通过举办高端国际论坛、组建跨国技术联盟、开展联合研究项目等形式,建立常态化经验交流机制。落实"提高化肥出口退税率"的建议,以缓解国内供需矛盾,同时,组织企业参与国际标准化组织(ISO)的肥料标准制定,推动中国技术、装备和服务"走出去",提升国际影响力。

2. 标准化技术培训体系建设

构建"三位一体"农业技术培训体系,实施分层培训机制、多元化教学模式及全流程质量控制。鼓励建议将"新型肥料生产"列入鼓励类产业,引导企业向高效、环保方向转型。此外,建议企业严格按照《肥料制造绿色工厂评价要求》等团体标准,为行业低碳发展提供技术规范。

3. 推动产业链融合发展

制定化肥联产技术规范,促进钢铁企业尾气资源化,利用对采用焦炉气制合成氨的项目,给予资源综合利用税收优惠。同时,支持晋陕蒙等主产区建立"煤-肥-氢"产业集群,实现合成氨与绿氢生产的设施共享。

• 化肥经销商

1. 加强化肥销售记录数字化

加强化肥经销商销售管理,建立化肥销售的数字化记录系统,从而为科学分析不同区域和作物的化肥施用提供数据支持,还能进一步为国家制定针对性的化肥减量政策提供信息参考。

2. 加强化肥经销商培训,赋能化肥经销商

化肥经销商的主要目的是销售肥料,然而化肥经销商却在农民采购肥料品种时起着决定性作用。 因此需要加强化肥经销商的培训,提供其农化的专业知识,同时提升化肥经销商对化肥施用的环境影响的理解,将其培养成为既了解不同肥料功能和效果,掌握科学施肥方法和技术、又能科学的推荐和指导农民施肥的农业专业人员,从而更好的发挥化肥经销商的作用。

附录 1

新型肥料的环境与经济效益

相比于等养分常规施肥处理,施用新型肥料能够普遍提高作物产量和养分利用效率,增产率范围为 $4.6\% \sim 17.5\%$,氮肥利用率提高 $16.8\% \sim 52.3\%$,农田土壤氨挥发损失量可降低 $7.2\% \sim 50.7\%$, N_2O 排放降低 $8.1\% \sim 40.8\%$,氮淋溶损失降低 $16.5\% \sim 43.8\%$,氮径流损失降低 $22.1\% \sim 45.4\%$ (丁文成等,2023)。

施肥在氧化亚氮减排与土壤质量提升、面源污染方面具有至关重要的协同作用,主要包含以下几个方面:

1.N₂O 减排与土壤质量提升的协同技术路径

秸秆科学还田技术。中国农业大学研究表明, 华北平原冬小麦 - 夏玉米轮作体系中,秸秆还田 虽使夏玉米季 N₂O 排放增加 22.3%,但因提升土 壤固氮能力,单位氮投入的 N₂O 排放降低 6.22%。 通过旱季还田或堆腐还田(避免淹水期直接还田), 可减少氮素损失 12.8%,同时提高土壤有机质含 量。南京土壤研究所黑土农田研究进一步验证, 有机肥替代 50% 化肥氮可降低 N₂O 排放,并缓 解土壤酸化(Xiaotong Song et al,2024)。

生物炭土壤改良技术。研究证实(张阿凤等,2012)秸秆热解生物炭(粒径 < 0.25mm)施用于稻田,通过增强土壤基因微生物(nosZI)活性,提高 N_2O 还原能力,使太湖平原稻田 N_2O 减排31%-58%。生物炭(15-30 t/ha)配施氮肥,在东南菜地中降低 N_2O 排放 12%-18%,温室气体强度下降 23%,同时促进 > 5mm 团聚体形成,有效改善土壤结构(中国科学院南京土壤研究所,2025)。

有机肥与化肥协同。中国农业科学院提出"有

机 替 代"模式 (Jing Zhang et al, 2019), 动物粪便与化肥氮比例 $0.8:1\sim1:1$, 配合高 C/N (>25)废弃物 (如锯末、甘蔗渣), 可提升土壤硝态氮同化速率,减少淋溶损失 30% 以上,同步降低 N_2O 排放。

水分优化管理。水稻田间歇灌溉或中期晒田,通过破坏厌氧环境降低甲烷排放,但需平衡干旱胁迫风险。浅表层 (0-5 cm) 淹水层可截留 90% 以上外源 N_2O ,并通过微生物消耗实现高转化速率。

2.N₂O 减排与面源污染控制的协同机制

菜地协同减排技术。中国农科院资划所针对菜地"大水大肥"导致的硝态氮累积问题,提出当土壤 C/N<7时,选用综纤维素 40%-50% 与>50%的废弃物(如玉米秸秆+松针)复配;而当 C/N≥7时,选用综纤维素 <40%与40%-50%的废弃物(如稻壳+落叶)复配。该技术通过增强微生物同化作用,降低氮素淋溶和 N₂O 排放(范长华等,2024)。

硝化抑制剂联用作用。中国热科院在热带菜地的研究表明,生物炭联用硝化抑制剂(硝吡烯胺),使 N_2O 和 NO 减排 23.4% 和 18.6%。机制在于抑制硝化菌及反硝化基因表达,同时提升土壤有机碳(SOC)储量(Changhua Fan et al, 2024)。

3. 区域适用性技术与政策协同

区域技术适配。热带 / 亚热带菜地:以生物炭 + 抑制剂为核心,减排效率 >23%;东北黑土区:有机肥替代 50% 化肥氮, N_2O 排放系数仅 0.34%-0.87% (低于 IPCC 缺省值 1.0%);华北平原:秸秆旱季还田,降低单位氮排放 6.22%。

政策支持需求。建立"政策-技术-市场"协同机制:完善农业碳排放统计核算体系,推动减排技术标准化;通过补贴降低专用肥料(如含硫酸盐/抑制剂的减排肥)成本;构建区域适用技术推广网络。

4. 综合效益与未来展望

减排潜力评估。中国农科院预估,通过上述技术组合,种植业可在保障粮食安全前提下实现 11%-24% 的 N₂O 减排幅度,同时提升土壤有机质 0.2-0.5 个百分点(Rui Liu et al, 2024)。

未解问题与方向。深层机制:基因微生物对土壤 N_2O 消耗的调控差异需进一步解析;技术优化:生物炭最佳施用量存在阈值效应(如 >30 t/ha 时增产效应不显著),需结合土壤类型精准匹配。

表 11 新型肥料经济效益和环境效益分析

肥料类型	经济效益	环境效益	生产成本 (元 / 吨)
微生物肥料	減少化肥用量 20%-40%降低农药成本 45.8%増加经济作物收益 30.3%(河南花生)	土壤有机碳增加 0.8%提高氮肥利用率 20%降解农业面源污染	平均生产成本 3000 / 吨设备耗损折旧率达 15%
腐殖酸	大田作物平均增产8%-15%腐殖酸和控释肥联合使用可增收62.6-263.4 (河南)	提高氮肥利用率 14.1%降低土壤碳足迹 30%-50%减少土壤重金属铬	● 原料成本 2000-4000
海藻酸	● 经济作物有效增幅 20%-30%● 减少氮肥用量 20%	减少氮肥挥发 40.1%-43%降低磷肥流失 50%降低重金属和海洋污染	● 原料成本 3000-6000
水溶肥	 提高作物产量 10-20% 节约肥料成 15%	减少氮磷流失 20%提升土壤有机质降低盐碱	受国际价格影响较大设备投入占比高
化学合成类 硝化抑制剂	硫包衣节肥 30%氮素利用率提升 50%-60%效益成本比 1.41	N₂O 效果减排可降解改善土壤微生物活性	合成材料价格低;硫包衣比普通肥料高 200-300 元 聚合物包膜高 800-1000
天然硝化 抑制剂	● 甲壳素增产 20%-40%● 海藻肥増产 7.1%-26%	N₂O 减排稳定高效完全生物降解增加土壤有机质	天人萃取物成本高加工复杂度高甲壳类加工费 600-800
底物类似 物抑制剂	◆生产成本和市场售价不明确;◆预计其经济效益与传统农药相当	● 有助于减少传统化学 农药的使用● 降低对环境的污染	● 发阶段可能需要较高的投入

肥料类型	经济效益	环境效益	生产成本(元 / 吨)
金属离子螯合剂	金属离子螯合剂在多个领域有广泛应用光伏硅片清洗领域制化螯合体系使单片加工成本降低 0.17 元	● 有效减少重金属污染● 废水处理成本降低	原料成本高设备投资大高分子重金属捕集沉淀剂DTCR 的运行费用为 1800 万元 / 年
过渡态类似物抑制剂	研发成本低高市场价值高多反应要求严格,生产成本高	减少化学试剂的使用合成过程污染小	● 高纯度原料设备成本高● 操作成本高
脲铵氮肥	降低农民购肥成本每亩增产 50-100 公斤 (水稻)提高氮肥利用率 10%-60%	减少氮素污染减缓土壤酸化减少土壤碳排放	投入成本低设备可以长期使用

新型肥料行业和传统肥料行业一样,属于资本密集性产业,产品的同质性很强,而且行业中没有垄断性企业存在。目前,人们追求作物品质的理念逐渐深入、施肥设备机械化不断提高,新型肥料的高效、环保理念已经深入人心。良好的政策前景、丰厚的市场利润吸引了众多企业的投资目光,落后产能不断淘汰,新产品以及新的工艺路线不断突破,传统的基础肥料生产企业,包括磷复肥企业开始向新型肥料(包括中微量元素肥)产业不断发展,农化服务方式 ("互联网+"和"大数据"技术)不断拓展和创新。不少复合肥企业以研发推广新型肥料为契机,寻求企业的转型升级,取得了良好效果,加剧了新肥市场的竞争激烈程度。可以预见,随着时间的推移,国内一些大型化工企业及其他一些有实力的企业或外国企业将更多的参与到新型肥料行业,这必将加大新肥企业间的竞争。

参考文献

Baozhong CAI, Xiuxiu WANG, Fang SHI, et al. Environmental impacts, effect evaluation, and policy optimization of China's agricultural green subsidies [J]. Research of Agricultural Modernization, 2023, 44(4): 567-574. doi: 10.13872/j.1000-0275.2023.0055.

Cui, X., Shang, Z., Xia, L., Xu, R., Adalibieke, W., Zhan, X., & Zhou, F. (2022). Deceleration of cropland-N2O emissions in China and future mitigation potentials. Environmental Science & Technology, 56(7), 4665-4675.

Dongjia LI, Rui LIU, Li CHEN, Yu GAO, Xuanyu GU, Yu-hua SHI, Jiahuan LIU, Weifeng ZHANG. PROPOSED INNOVATION REFORM MODEL FOR THE MINERAL NITROGEN FERTILIZER INDUSTRY IN CHINA TO REDUCE GREENHOUSE GAS EMISSIONS. Front. Agr. Sci. Eng., 2023, 10(2): 234-247 https://doi.org/10.15302/J-FASE-2022468.

Changhua Fan, Youfeng Leng, Xiaotong Wang, Junjiao Wang, Yajun Fu, Xiaomin Huang, Wenlong Gao, Wen Zhang, Huiran Liu, Ziyu Ning, Qinfen Li, Miao Chen, Enhanced mitigation of N2O and NO emissions through co-application of biochar with nitrapyrin in an intensive tropical vegetable field, Agriculture, Ecosystems & Environment, Volume 365,2024,108910, ISSN 0167-8809, https://doi.org/10.1016/j.agee.2024.108910.

Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327 (5968): 1008–1010.

Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KW, Vitousek PM, Zhang FS. Significant acidification in major Chinese croplands. Science. 2010 Feb 19;327(5968):1008-10. doi: 10.1126/science.1182570. Epub 2010 Feb 11. PMID: 20150447.

Hu Min. Looking at the trend of China's fertilizer import and export in the era of legal inspection from the perspective of import and expert in 2023. Phosphate & Compound Fertilizer. 2024,39(04):1-4.

International Fertilizer Association (2009) Fertilizers, climate change and enhancing agricultural productivity sustainably. Available at http://www.fertilizer.org. Accessed April 1, 2012.

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterffeld, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. https://doi.org/10.1017/9781009157896.

Jing Zhang, Minghao Zhuang, Nan Shan, Qi Zhao, Hu Li, Ligang Wang, substituting organic manure for compound fertilizer increases yield and decreases NH3 and N2O emissions in an intensive vegetable production system, Science of The Total Environment, Volume 670, 2019, Pages 1184-1189, ISSN 0048-9697.

LI Yan-qing, WEN Yan-chen, LIN Zhi-an, ZHAO Bing-qiang. Effect of different manures combined with chemical fertilizer on yields of cropsand gaseous N loss in farmland[J]. Journal of Plant Nutrition and Fertilizers. 2019,25(11):1835-1846.

LI Su-yu, LI Han, WANG Tin, LIU Lv-yi, LI Yan-li, WANG Li. Research and suggestions on achieving carbon neutrality in China's nitrogen fertilizer supply chain. Phosphate & Compound Fertilizer, 2024, (003): 039.

Ma, R., Yu, K., Xiao, S., Liu, S., Ciais, P., & Zou, J. (2022). Data-driven estimates of fertilizer-induced soil NH₃, NO and N₂O emissions from croplands in China and their climate change impacts. Global Change Biology, 28(3), 1008-1022.

United Nations Environment Programme and Food and Agriculture Organization. 2024. Global Nitrous Oxide Assessment. Nairobi. https://doi.org/10.59117/20.500.11822/46562

Rui Liu, Peng Jiang, Guopeng Zhou, Danna Chang, Hao Liang, Qiang Chai, Weidong Cao, Co-incorporation of wheat straw and hairy vetch reduced soil N₂O emission via regulating nitrifier and denitrifier structure on the Qinghai plateau, Applied Soil Ecology, Volume 202,2024, 105574, ISSN 0929-1393, https://doi.org/10.1016/j.apsoil.2024.105574.

Song, Xiaotong, et al. "Labile Carbon from Artificial Roots Alters the Patterns of N₂O and N₂ Production in Agricultural Soils." Environmental Science & Damp; Technology, Feb. 2024. Crossref, https://doi.org/10.1021/acs.est.3c10833.

Yang X L, Xiong J R, Du T S, et al. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health[J]. Nature Communications, 2024, 15(1): 198.

Zhang W F, Dou Z X, He P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China [J]. Proceedings of the National Academy of Sciences, 2013, 110 (21): 8375 – 8380.

国家统计局. 中国统计年鉴 2024. 中国统计出版社

中国 . 中华人民共和国气候变化第一次双年透明度报告 . 2024. https://unfccc.int/reports.

高新院 2024. "十五五"时期我国产业科技创新发展形势研判及思路建议. http://www.achie.org/news/cygh/2024/1111/23609.html

锚定中国式现代化中国农业发展银行助力农业强国建设续写时代新篇 2024. 中国农业发展银行 .https://www.adbc.com.cn/n5/n17/c617361/content.html

房丽萍,孟军. 2013. 化肥施用对中国粮食产量的贡献率分析 —— 基于主成分回归 c—d 生产函数模型的实证研究 . 中 国农学通报 .

弗雷德·皮尔斯. 2018. 氮污染危机来临,我们应付得了吗?对话地球. https://dialogue.earth/zh/7/43904/

郭漫天 2025. "数"说工业化:中国氮肥工业是如何发展起来的?. [J]. 观察者网. https://user.guancha.cn/wap/content?id=1381861.

何山, 孙媛媛, 沈掌泉, 王珂 2017. 大数据时代精准施肥模式实现路径及其技术和方法研究展望, 植物营养与肥料学报 2017, 23(6):1514-1524.

胡敏 2024. 从 2023 年进出口看法检时代我国化肥进出口趋势 [J]. 磷肥与复肥 ,2024,39(04):1-4.

李燕青 , 温延臣 , 林治安 , 赵秉强 2019. 不同有机肥与化肥配施对作物产量及农田氮肥气态损失的影响 [J]. 植物营养与肥料学报 2019.25(11):1835-1846.

李娟, 王亚静, 杨相东, 刘艳鹏, 赵冬梅, 岳继生 2024. 农业高质量发展背景下的新型肥料发展 [J]. 蔬菜, 2024(6):1-13.

李婷玉,姚澜,钟于秀,王怡,李伟芳,徐洋,李冬佳,刘蕊,李贝,张卫 峰 2024. 绿色发展背景下的中国氮肥 需求 [J/OL] . 土壤学报 . https://link.cnki.net/urlid/32.1119.P.20240910.2046.003

李素玉,李航,王婷,刘绿怡,李艳丽,王莉 2024. 关于我国氮肥供应链实现碳中和的研究与建议 [J]. 磷肥与复肥, 2024, 003: 039.

田伟,程梓伦,周琪,等 2024.生物有机肥减少菜地土壤 N₂O 排放的潜力与机制 [J/OL]. 农业资源与环境学报,1-16[2025-03-13]. https://doi.org/10.13254/j.jare.2024.0008.

夏雯雯,杜志雄,郜亮亮 2019.土地经营规模对测土配方施肥技术应用的影响研究——基于家庭农场监测数据的观察 [J]. 中国土地科学,2019,33(11):70-78.

祝伟 , 祁丽霞 , 王瑞梅 , 张希玲 2021. 基于玉米种植的农地规模对化肥减量增效的影响分析 [J]. 中国农业资源与区划 , 2021, 42(10): 84-94.

张阿凤,潘根兴,刘玉明,李恋卿,张旭辉,郑金伟 2012. 一种降低农田氧化亚氮排放的秸秆生物黑炭土壤处理方法. CN Patent 201110171775.1. Jan 11, 2012.

免责声明 ------

本报告内容和观点仅代表作者理解和观点,旨在加强相关领域的讨论交流,不代表支持方、作者所属机构、调研专家学者的立场和观点。本报告内容采用数据和信息均来自公开的信息和渠道,使用者需自行对信息的真实性、完整性、适用性进行审慎判断,并独立承担因使用本报告内容所产生的一切风险及后果,本报告作者不为此承担任何法律责任。